DispatcherServlet

Spring MVC, as many other web frameworks, is designed around the front controller pattern where a central Servlet, the DispatcherServlet, provides a shared algorithm for request processing, while actual work is performed by configurable delegate components. This model is flexible and supports diverse workflows.

The DispatcherServlet, as any Servlet, needs to be declared and mapped according to the Servlet specification by using Java configuration or in web.xml. In turn, the DispatcherServlet uses Spring configuration to discover the delegate components it needs for request mapping, view resolution, exception handling, and more.

The following example of the Java configuration registers and initializes the DispatcherServlet, which is auto-detected by the Servlet container (see mvc-container-config):

Java
public class MyWebApplicationInitializer implements WebApplicationInitializer {

	@Override
	public void onStartup(ServletContext servletCxt) {

		// Load Spring web application configuration
		AnnotationConfigWebApplicationContext ac = new AnnotationConfigWebApplicationContext();
		ac.register(AppConfig.class);
		ac.refresh();

		// Create and register the DispatcherServlet
		DispatcherServlet servlet = new DispatcherServlet(ac);
		ServletRegistration.Dynamic registration = servletCxt.addServlet("app", servlet);
		registration.setLoadOnStartup(1);
		registration.addMapping("/app/*");
	}
}
Kotlin
class MyWebApplicationInitializer : WebApplicationInitializer {

	override fun onStartup(servletCxt: ServletContext) {

		// Load Spring web application configuration
		val ac = AnnotationConfigWebApplicationContext()
		ac.register(AppConfig::class.java)
		ac.refresh()

		// Create and register the DispatcherServlet
		val servlet = DispatcherServlet(ac)
		val registration = servletCxt.addServlet("app", servlet)
		registration.setLoadOnStartup(1)
		registration.addMapping("/app/*")
	}
}
In addition to using the ServletContext API directly, you can also extend AbstractAnnotationConfigDispatcherServletInitializer and override specific methods (see the example under mvc-servlet-context-hierarchy).

The following example of web.xml configuration registers and initializes the DispatcherServlet:

<web-app>

	<listener>
		<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
	</listener>

	<context-param>
		<param-name>contextConfigLocation</param-name>
		<param-value>/WEB-INF/app-context.xml</param-value>
	</context-param>

	<servlet>
		<servlet-name>app</servlet-name>
		<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
		<init-param>
			<param-name>contextConfigLocation</param-name>
			<param-value></param-value>
		</init-param>
		<load-on-startup>1</load-on-startup>
	</servlet>

	<servlet-mapping>
		<servlet-name>app</servlet-name>
		<url-pattern>/app/*</url-pattern>
	</servlet-mapping>

</web-app>
Spring Boot follows a different initialization sequence. Rather than hooking into the lifecycle of the Servlet container, Spring Boot uses Spring configuration to bootstrap itself and the embedded Servlet container. Filter and Servlet declarations are detected in Spring configuration and registered with the Servlet container. For more details, see the Spring Boot documentation.

Context Hierarchy

DispatcherServlet expects a WebApplicationContext (an extension of a plain ApplicationContext) for its own configuration. WebApplicationContext has a link to the ServletContext and the Servlet with which it is associated. It is also bound to the ServletContext such that applications can use static methods on RequestContextUtils to look up the WebApplicationContext if they need access to it.

For many applications, having a single WebApplicationContext is simple and suffices. It is also possible to have a context hierarchy where one root WebApplicationContext is shared across multiple DispatcherServlet (or other Servlet) instances, each with its own child WebApplicationContext configuration. See Additional Capabilities of the ApplicationContext for more on the context hierarchy feature.

The root WebApplicationContext typically contains infrastructure beans, such as data repositories and business services that need to be shared across multiple Servlet instances. Those beans are effectively inherited and can be overridden (that is, re-declared) in the Servlet-specific child WebApplicationContext, which typically contains beans local to the given Servlet. The following image shows this relationship:

mvc context hierarchy

The following example configures a WebApplicationContext hierarchy:

Java
public class MyWebAppInitializer extends AbstractAnnotationConfigDispatcherServletInitializer {

	@Override
	protected Class<?>[] getRootConfigClasses() {
		return new Class<?>[] { RootConfig.class };
	}

	@Override
	protected Class<?>[] getServletConfigClasses() {
		return new Class<?>[] { App1Config.class };
	}

	@Override
	protected String[] getServletMappings() {
		return new String[] { "/app1/*" };
	}
}
Kotlin
class MyWebAppInitializer : AbstractAnnotationConfigDispatcherServletInitializer() {

	override fun getRootConfigClasses(): Array<Class<*>> {
		return arrayOf(RootConfig::class.java)
	}

	override fun getServletConfigClasses(): Array<Class<*>> {
		return arrayOf(App1Config::class.java)
	}

	override fun getServletMappings(): Array<String> {
		return arrayOf("/app1/*")
	}
}
If an application context hierarchy is not required, applications can return all configuration through getRootConfigClasses() and null from getServletConfigClasses().

The following example shows the web.xml equivalent:

<web-app>

	<listener>
		<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
	</listener>

	<context-param>
		<param-name>contextConfigLocation</param-name>
		<param-value>/WEB-INF/root-context.xml</param-value>
	</context-param>

	<servlet>
		<servlet-name>app1</servlet-name>
		<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
		<init-param>
			<param-name>contextConfigLocation</param-name>
			<param-value>/WEB-INF/app1-context.xml</param-value>
		</init-param>
		<load-on-startup>1</load-on-startup>
	</servlet>

	<servlet-mapping>
		<servlet-name>app1</servlet-name>
		<url-pattern>/app1/*</url-pattern>
	</servlet-mapping>

</web-app>
If an application context hierarchy is not required, applications may configure a “root” context only and leave the contextConfigLocation Servlet parameter empty.

Special Bean Types

The DispatcherServlet delegates to special beans to process requests and render the appropriate responses. By “special beans” we mean Spring-managed Object instances that implement framework contracts. Those usually come with built-in contracts, but you can customize their properties and extend or replace them.

The following table lists the special beans detected by the DispatcherServlet:

Bean type Explanation

HandlerMapping

Map a request to a handler along with a list of interceptors for pre- and post-processing. The mapping is based on some criteria, the details of which vary by HandlerMapping implementation.

The two main HandlerMapping implementations are RequestMappingHandlerMapping (which supports @RequestMapping annotated methods) and SimpleUrlHandlerMapping (which maintains explicit registrations of URI path patterns to handlers).

HandlerAdapter

Help the DispatcherServlet to invoke a handler mapped to a request, regardless of how the handler is actually invoked. For example, invoking an annotated controller requires resolving annotations. The main purpose of a HandlerAdapter is to shield the DispatcherServlet from such details.

HandlerExceptionResolver

Strategy to resolve exceptions, possibly mapping them to handlers, to HTML error views, or other targets. See mvc-exceptionhandlers.

ViewResolver

Resolve logical String-based view names returned from a handler to an actual View with which to render to the response. See mvc-viewresolver and mvc-view.

LocaleResolver, LocaleContextResolver

Resolve the Locale a client is using and possibly their time zone, in order to be able to offer internationalized views. See mvc-localeresolver.

ThemeResolver

Resolve themes your web application can use — for example, to offer personalized layouts. See mvc-themeresolver.

MultipartResolver

Abstraction for parsing a multi-part request (for example, browser form file upload) with the help of some multipart parsing library. See mvc-multipart.

FlashMapManager

Store and retrieve the “input” and the “output” FlashMap that can be used to pass attributes from one request to another, usually across a redirect. See mvc-flash-attributes.

Web MVC Config

Applications can declare the infrastructure beans listed in mvc-servlet-special-bean-types that are required to process requests. The DispatcherServlet checks the WebApplicationContext for each special bean. If there are no matching bean types, it falls back on the default types listed in DispatcherServlet.properties.

In most cases, the mvc-config is the best starting point. It declares the required beans in either Java or XML and provides a higher-level configuration callback API to customize it.

Spring Boot relies on the MVC Java configuration to configure Spring MVC and provides many extra convenient options.

Servlet Config

In a Servlet 3.0+ environment, you have the option of configuring the Servlet container programmatically as an alternative or in combination with a web.xml file. The following example registers a DispatcherServlet:

Java
import org.springframework.web.WebApplicationInitializer;

public class MyWebApplicationInitializer implements WebApplicationInitializer {

	@Override
	public void onStartup(ServletContext container) {
		XmlWebApplicationContext appContext = new XmlWebApplicationContext();
		appContext.setConfigLocation("/WEB-INF/spring/dispatcher-config.xml");

		ServletRegistration.Dynamic registration = container.addServlet("dispatcher", new DispatcherServlet(appContext));
		registration.setLoadOnStartup(1);
		registration.addMapping("/");
	}
}
Kotlin
import org.springframework.web.WebApplicationInitializer

class MyWebApplicationInitializer : WebApplicationInitializer {

	override fun onStartup(container: ServletContext) {
		val appContext = XmlWebApplicationContext()
		appContext.setConfigLocation("/WEB-INF/spring/dispatcher-config.xml")

		val registration = container.addServlet("dispatcher", DispatcherServlet(appContext))
		registration.setLoadOnStartup(1)
		registration.addMapping("/")
	}
}

WebApplicationInitializer is an interface provided by Spring MVC that ensures your implementation is detected and automatically used to initialize any Servlet 3 container. An abstract base class implementation of WebApplicationInitializer named AbstractDispatcherServletInitializer makes it even easier to register the DispatcherServlet by overriding methods to specify the servlet mapping and the location of the DispatcherServlet configuration.

This is recommended for applications that use Java-based Spring configuration, as the following example shows:

Java
public class MyWebAppInitializer extends AbstractAnnotationConfigDispatcherServletInitializer {

	@Override
	protected Class<?>[] getRootConfigClasses() {
		return null;
	}

	@Override
	protected Class<?>[] getServletConfigClasses() {
		return new Class<?>[] { MyWebConfig.class };
	}

	@Override
	protected String[] getServletMappings() {
		return new String[] { "/" };
	}
}
Kotlin
class MyWebAppInitializer : AbstractAnnotationConfigDispatcherServletInitializer() {

	override fun getRootConfigClasses(): Array<Class<*>>? {
		return null
	}

	override fun getServletConfigClasses(): Array<Class<*>>? {
		return arrayOf(MyWebConfig::class.java)
	}

	override fun getServletMappings(): Array<String> {
		return arrayOf("/")
	}
}

If you use XML-based Spring configuration, you should extend directly from AbstractDispatcherServletInitializer, as the following example shows:

Java
public class MyWebAppInitializer extends AbstractDispatcherServletInitializer {

	@Override
	protected WebApplicationContext createRootApplicationContext() {
		return null;
	}

	@Override
	protected WebApplicationContext createServletApplicationContext() {
		XmlWebApplicationContext cxt = new XmlWebApplicationContext();
		cxt.setConfigLocation("/WEB-INF/spring/dispatcher-config.xml");
		return cxt;
	}

	@Override
	protected String[] getServletMappings() {
		return new String[] { "/" };
	}
}
Kotlin
class MyWebAppInitializer : AbstractDispatcherServletInitializer() {

	override fun createRootApplicationContext(): WebApplicationContext? {
		return null
	}

	override fun createServletApplicationContext(): WebApplicationContext {
		return XmlWebApplicationContext().apply {
			setConfigLocation("/WEB-INF/spring/dispatcher-config.xml")
		}
	}

	override fun getServletMappings(): Array<String> {
		return arrayOf("/")
	}
}

AbstractDispatcherServletInitializer also provides a convenient way to add Filter instances and have them be automatically mapped to the DispatcherServlet, as the following example shows:

Java
public class MyWebAppInitializer extends AbstractDispatcherServletInitializer {

	// ...

	@Override
	protected Filter[] getServletFilters() {
		return new Filter[] {
			new HiddenHttpMethodFilter(), new CharacterEncodingFilter() };
	}
}
Kotlin
class MyWebAppInitializer : AbstractDispatcherServletInitializer() {

	// ...

	override fun getServletFilters(): Array<Filter> {
		return arrayOf(HiddenHttpMethodFilter(), CharacterEncodingFilter())
	}
}

Each filter is added with a default name based on its concrete type and automatically mapped to the DispatcherServlet.

The isAsyncSupported protected method of AbstractDispatcherServletInitializer provides a single place to enable async support on the DispatcherServlet and all filters mapped to it. By default, this flag is set to true.

Finally, if you need to further customize the DispatcherServlet itself, you can override the createDispatcherServlet method.

Processing

The DispatcherServlet processes requests as follows:

  • The WebApplicationContext is searched for and bound in the request as an attribute that the controller and other elements in the process can use. It is bound by default under the DispatcherServlet.WEB_APPLICATION_CONTEXT_ATTRIBUTE key.

  • The locale resolver is bound to the request to let elements in the process resolve the locale to use when processing the request (rendering the view, preparing data, and so on). If you do not need locale resolving, you do not need the locale resolver.

  • The theme resolver is bound to the request to let elements such as views determine which theme to use. If you do not use themes, you can ignore it.

  • If you specify a multipart file resolver, the request is inspected for multiparts. If multiparts are found, the request is wrapped in a MultipartHttpServletRequest for further processing by other elements in the process. See mvc-multipart for further information about multipart handling.

  • An appropriate handler is searched for. If a handler is found, the execution chain associated with the handler (preprocessors, postprocessors, and controllers) is executed in order to prepare a model or rendering. Alternatively, for annotated controllers, the response can be rendered (within the HandlerAdapter) instead of returning a view.

  • If a model is returned, the view is rendered. If no model is returned (maybe due to a preprocessor or postprocessor intercepting the request, perhaps for security reasons), no view is rendered, because the request could already have been fulfilled.

The HandlerExceptionResolver beans declared in the WebApplicationContext are used to resolve exceptions thrown during request processing. Those exception resolvers allow customizing the logic to address exceptions. See mvc-exceptionhandlers for more details.

The Spring DispatcherServlet also supports the return of the last-modification-date, as specified by the Servlet API. The process of determining the last modification date for a specific request is straightforward: The DispatcherServlet looks up an appropriate handler mapping and tests whether the handler that is found implements the LastModified interface. If so, the value of the long getLastModified(request) method of the LastModified interface is returned to the client.

You can customize individual DispatcherServlet instances by adding Servlet initialization parameters (init-param elements) to the Servlet declaration in the web.xml file. The following table lists the supported parameters:

Table 1. DispatcherServlet initialization parameters
Parameter Explanation

contextClass

Class that implements ConfigurableWebApplicationContext, to be instantiated and locally configured by this Servlet. By default, XmlWebApplicationContext is used.

contextConfigLocation

String that is passed to the context instance (specified by contextClass) to indicate where contexts can be found. The string consists potentially of multiple strings (using a comma as a delimiter) to support multiple contexts. In the case of multiple context locations with beans that are defined twice, the latest location takes precedence.

namespace

Namespace of the WebApplicationContext. Defaults to [servlet-name]-servlet.

throwExceptionIfNoHandlerFound

Whether to throw a NoHandlerFoundException when no handler was found for a request. The exception can then be caught with a HandlerExceptionResolver (for example, by using an @ExceptionHandler controller method) and handled as any others.

By default, this is set to false, in which case the DispatcherServlet sets the response status to 404 (NOT_FOUND) without raising an exception.

Note that, if default servlet handling is also configured, unresolved requests are always forwarded to the default servlet and a 404 is never raised.

Interception

All HandlerMapping implementations support handler interceptors that are useful when you want to apply specific functionality to certain requests — for example, checking for a principal. Interceptors must implement HandlerInterceptor from the org.springframework.web.servlet package with three methods that should provide enough flexibility to do all kinds of pre-processing and post-processing:

  • preHandle(..): Before the actual handler is executed

  • postHandle(..): After the handler is executed

  • afterCompletion(..): After the complete request has finished

The preHandle(..) method returns a boolean value. You can use this method to break or continue the processing of the execution chain. When this method returns true, the handler execution chain continues. When it returns false, the DispatcherServlet assumes the interceptor itself has taken care of requests (and, for example, rendered an appropriate view) and does not continue executing the other interceptors and the actual handler in the execution chain.

See mvc-config-interceptors in the section on MVC configuration for examples of how to configure interceptors. You can also register them directly by using setters on individual HandlerMapping implementations.

Note that postHandle is less useful with @ResponseBody and ResponseEntity methods for which the response is written and committed within the HandlerAdapter and before postHandle. That means it is too late to make any changes to the response, such as adding an extra header. For such scenarios, you can implement ResponseBodyAdvice and either declare it as an mvc-ann-controller-advice bean or configure it directly on RequestMappingHandlerAdapter.

Exceptions

If an exception occurs during request mapping or is thrown from a request handler (such as a @Controller), the DispatcherServlet delegates to a chain of HandlerExceptionResolver beans to resolve the exception and provide alternative handling, which is typically an error response.

The following table lists the available HandlerExceptionResolver implementations:

Table 2. HandlerExceptionResolver implementations
HandlerExceptionResolver Description

SimpleMappingExceptionResolver

A mapping between exception class names and error view names. Useful for rendering error pages in a browser application.

DefaultHandlerExceptionResolver

Resolves exceptions raised by Spring MVC and maps them to HTTP status codes. See also alternative ResponseEntityExceptionHandler and mvc-ann-rest-exceptions.

ResponseStatusExceptionResolver

Resolves exceptions with the @ResponseStatus annotation and maps them to HTTP status codes based on the value in the annotation.

ExceptionHandlerExceptionResolver

Resolves exceptions by invoking an @ExceptionHandler method in a @Controller or a @ControllerAdvice class. See @ExceptionHandler methods.

Chain of Resolvers

You can form an exception resolver chain by declaring multiple HandlerExceptionResolver beans in your Spring configuration and setting their order properties as needed. The higher the order property, the later the exception resolver is positioned.

The contract of HandlerExceptionResolver specifies that it can return:

  • a ModelAndView that points to an error view.

  • An empty ModelAndView if the exception was handled within the resolver.

  • null if the exception remains unresolved, for subsequent resolvers to try, and, if the exception remains at the end, it is allowed to bubble up to the Servlet container.

The mvc-config automatically declares built-in resolvers for default Spring MVC exceptions, for @ResponseStatus annotated exceptions, and for support of @ExceptionHandler methods. You can customize that list or replace it.

Container Error Page

If an exception remains unresolved by any HandlerExceptionResolver and is, therefore, left to propagate or if the response status is set to an error status (that is, 4xx, 5xx), Servlet containers can render a default error page in HTML. To customize the default error page of the container, you can declare an error page mapping in web.xml. The following example shows how to do so:

<error-page>
	<location>/error</location>
</error-page>

Given the preceding example, when an exception bubbles up or the response has an error status, the Servlet container makes an ERROR dispatch within the container to the configured URL (for example, /error). This is then processed by the DispatcherServlet, possibly mapping it to a @Controller, which could be implemented to return an error view name with a model or to render a JSON response, as the following example shows:

Java
@RestController
public class ErrorController {

	@RequestMapping(path = "/error")
	public Map<String, Object> handle(HttpServletRequest request) {
		Map<String, Object> map = new HashMap<String, Object>();
		map.put("status", request.getAttribute("javax.servlet.error.status_code"));
		map.put("reason", request.getAttribute("javax.servlet.error.message"));
		return map;
	}
}
Kotlin
@RestController
class ErrorController {

	@RequestMapping(path = ["/error"])
	fun handle(request: HttpServletRequest): Map<String, Any> {
		val map = HashMap<String, Any>()
		map["status"] = request.getAttribute("javax.servlet.error.status_code")
		map["reason"] = request.getAttribute("javax.servlet.error.message")
		return map
	}
}
The Servlet API does not provide a way to create error page mappings in Java. You can, however, use both a WebApplicationInitializer and a minimal web.xml.

View Resolution

Spring MVC defines the ViewResolver and View interfaces that let you render models in a browser without tying you to a specific view technology. ViewResolver provides a mapping between view names and actual views. View addresses the preparation of data before handing over to a specific view technology.

The following table provides more details on the ViewResolver hierarchy:

Table 3. ViewResolver implementations
ViewResolver Description

AbstractCachingViewResolver

Sub-classes of AbstractCachingViewResolver cache view instances that they resolve. Caching improves performance of certain view technologies. You can turn off the cache by setting the cache property to false. Furthermore, if you must refresh a certain view at runtime (for example, when a FreeMarker template is modified), you can use the removeFromCache(String viewName, Locale loc) method.

XmlViewResolver

Implementation of ViewResolver that accepts a configuration file written in XML with the same DTD as Spring’s XML bean factories. The default configuration file is /WEB-INF/views.xml.

ResourceBundleViewResolver

Implementation of ViewResolver that uses bean definitions in a ResourceBundle, specified by the bundle base name. For each view it is supposed to resolve, it uses the value of the property [viewname].(class) as the view class and the value of the property [viewname].url as the view URL. You can find examples in the chapter on mvc-view.

UrlBasedViewResolver

Simple implementation of the ViewResolver interface that affects the direct resolution of logical view names to URLs without an explicit mapping definition. This is appropriate if your logical names match the names of your view resources in a straightforward manner, without the need for arbitrary mappings.

InternalResourceViewResolver

Convenient subclass of UrlBasedViewResolver that supports InternalResourceView (in effect, Servlets and JSPs) and subclasses such as JstlView and TilesView. You can specify the view class for all views generated by this resolver by using setViewClass(..). See the UrlBasedViewResolver javadoc for details.

FreeMarkerViewResolver

Convenient subclass of UrlBasedViewResolver that supports FreeMarkerView and custom subclasses of them.

ContentNegotiatingViewResolver

Implementation of the ViewResolver interface that resolves a view based on the request file name or Accept header. See mvc-multiple-representations.

Handling

You can chain view resolvers by declaring more than one resolver bean and, if necessary, by setting the order property to specify ordering. Remember, the higher the order property, the later the view resolver is positioned in the chain.

The contract of a ViewResolver specifies that it can return null to indicate that the view could not be found. However, in the case of JSPs and InternalResourceViewResolver, the only way to figure out if a JSP exists is to perform a dispatch through RequestDispatcher. Therefore, you must always configure an InternalResourceViewResolver to be last in the overall order of view resolvers.

Configuring view resolution is as simple as adding ViewResolver beans to your Spring configuration. The mvc-config provides a dedicated configuration API for mvc-config-view-resolvers and for adding logic-less View Controllers which are useful for HTML template rendering without controller logic.

Redirecting

The special redirect: prefix in a view name lets you perform a redirect. The UrlBasedViewResolver (and its subclasses) recognize this as an instruction that a redirect is needed. The rest of the view name is the redirect URL.

The net effect is the same as if the controller had returned a RedirectView, but now the controller itself can operate in terms of logical view names. A logical view name (such as redirect:/myapp/some/resource) redirects relative to the current Servlet context, while a name such as redirect:https://myhost.com/some/arbitrary/path redirects to an absolute URL.

Note that, if a controller method is annotated with the @ResponseStatus, the annotation value takes precedence over the response status set by RedirectView.

Forwarding

You can also use a special forward: prefix for view names that are ultimately resolved by UrlBasedViewResolver and subclasses. This creates an InternalResourceView, which does a RequestDispatcher.forward(). Therefore, this prefix is not useful with InternalResourceViewResolver and InternalResourceView (for JSPs), but it can be helpful if you use another view technology but still want to force a forward of a resource to be handled by the Servlet/JSP engine. Note that you may also chain multiple view resolvers, instead.

Content Negotiation

ContentNegotiatingViewResolver does not resolve views itself but rather delegates to other view resolvers and selects the view that resembles the representation requested by the client. The representation can be determined from the Accept header or from a query parameter (for example, "/path?format=pdf").

The ContentNegotiatingViewResolver selects an appropriate View to handle the request by comparing the request media types with the media type (also known as Content-Type) supported by the View associated with each of its ViewResolvers. The first View in the list that has a compatible Content-Type returns the representation to the client. If a compatible view cannot be supplied by the ViewResolver chain, the list of views specified through the DefaultViews property is consulted. This latter option is appropriate for singleton Views that can render an appropriate representation of the current resource regardless of the logical view name. The Accept header can include wildcards (for example text/*), in which case a View whose Content-Type is text/xml is a compatible match.

See mvc-config-view-resolvers under mvc-config for configuration details.

Locale

Most parts of Spring’s architecture support internationalization, as the Spring web MVC framework does. DispatcherServlet lets you automatically resolve messages by using the client’s locale. This is done with LocaleResolver objects.

When a request comes in, the DispatcherServlet looks for a locale resolver and, if it finds one, it tries to use it to set the locale. By using the RequestContext.getLocale() method, you can always retrieve the locale that was resolved by the locale resolver.

In addition to automatic locale resolution, you can also attach an interceptor to the handler mapping (see mvc-handlermapping-interceptor for more information on handler mapping interceptors) to change the locale under specific circumstances (for example, based on a parameter in the request).

Locale resolvers and interceptors are defined in the org.springframework.web.servlet.i18n package and are configured in your application context in the normal way. The following selection of locale resolvers is included in Spring.

Time Zone

In addition to obtaining the client’s locale, it is often useful to know its time zone. The LocaleContextResolver interface offers an extension to LocaleResolver that lets resolvers provide a richer LocaleContext, which may include time zone information.

When available, the user’s TimeZone can be obtained by using the RequestContext.getTimeZone() method. Time zone information is automatically used by any Date/Time Converter and Formatter objects that are registered with Spring’s ConversionService.

Header Resolver

This locale resolver inspects the accept-language header in the request that was sent by the client (for example, a web browser). Usually, this header field contains the locale of the client’s operating system. Note that this resolver does not support time zone information.

This locale resolver inspects a Cookie that might exist on the client to see if a Locale or TimeZone is specified. If so, it uses the specified details. By using the properties of this locale resolver, you can specify the name of the cookie as well as the maximum age. The following example defines a CookieLocaleResolver:

<bean id="localeResolver" class="org.springframework.web.servlet.i18n.CookieLocaleResolver">

	<property name="cookieName" value="clientlanguage"/>

	<!-- in seconds. If set to -1, the cookie is not persisted (deleted when browser shuts down) -->
	<property name="cookieMaxAge" value="100000"/>

</bean>

The following table describes the properties CookieLocaleResolver:

Session Resolver

The SessionLocaleResolver lets you retrieve Locale and TimeZone from the session that might be associated with the user’s request. In contrast to CookieLocaleResolver, this strategy stores locally chosen locale settings in the Servlet container’s HttpSession. As a consequence, those settings are temporary for each session and are, therefore, lost when each session terminates.

Note that there is no direct relationship with external session management mechanisms, such as the Spring Session project. This SessionLocaleResolver evaluates and modifies the corresponding HttpSession attributes against the current HttpServletRequest.

Locale Interceptor

You can enable changing of locales by adding the LocaleChangeInterceptor to one of the HandlerMapping definitions. It detects a parameter in the request and changes the locale accordingly, calling the setLocale method on the LocaleResolver in the dispatcher’s application context. The next example shows that calls to all *.view resources that contain a parameter named siteLanguage now changes the locale. So, for example, a request for the URL, https://www.sf.net/home.view?siteLanguage=nl, changes the site language to Dutch. The following example shows how to intercept the locale:

<bean id="localeChangeInterceptor"
		class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">
	<property name="paramName" value="siteLanguage"/>
</bean>

<bean id="localeResolver"
		class="org.springframework.web.servlet.i18n.CookieLocaleResolver"/>

<bean id="urlMapping"
		class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
	<property name="interceptors">
		<list>
			<ref bean="localeChangeInterceptor"/>
		</list>
	</property>
	<property name="mappings">
		<value>/**/*.view=someController</value>
	</property>
</bean>

Themes

You can apply Spring Web MVC framework themes to set the overall look-and-feel of your application, thereby enhancing user experience. A theme is a collection of static resources, typically style sheets and images, that affect the visual style of the application.

Defining a theme

To use themes in your web application, you must set up an implementation of the org.springframework.ui.context.ThemeSource interface. The WebApplicationContext interface extends ThemeSource but delegates its responsibilities to a dedicated implementation. By default, the delegate is an org.springframework.ui.context.support.ResourceBundleThemeSource implementation that loads properties files from the root of the classpath. To use a custom ThemeSource implementation or to configure the base name prefix of the ResourceBundleThemeSource, you can register a bean in the application context with the reserved name, themeSource. The web application context automatically detects a bean with that name and uses it.

When you use the ResourceBundleThemeSource, a theme is defined in a simple properties file. The properties file lists the resources that make up the theme, as the following example shows:

styleSheet=/themes/cool/style.css
background=/themes/cool/img/coolBg.jpg

The keys of the properties are the names that refer to the themed elements from view code. For a JSP, you typically do this using the spring:theme custom tag, which is very similar to the spring:message tag. The following JSP fragment uses the theme defined in the previous example to customize the look and feel:

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<html>
	<head>
		<link rel="stylesheet" href="<spring:theme code='styleSheet'/>" type="text/css"/>
	</head>
	<body style="background=<spring:theme code='background'/>">
		...
	</body>
</html>

By default, the ResourceBundleThemeSource uses an empty base name prefix. As a result, the properties files are loaded from the root of the classpath. Thus, you would put the cool.properties theme definition in a directory at the root of the classpath (for example, in /WEB-INF/classes). The ResourceBundleThemeSource uses the standard Java resource bundle loading mechanism, allowing for full internationalization of themes. For example, we could have a /WEB-INF/classes/cool_nl.properties that references a special background image with Dutch text on it.

Resolving Themes

After you define themes, as described in the preceding section, you decide which theme to use. The DispatcherServlet looks for a bean named themeResolver to find out which ThemeResolver implementation to use. A theme resolver works in much the same way as a LocaleResolver. It detects the theme to use for a particular request and can also alter the request’s theme. The following table describes the theme resolvers provided by Spring:

Table 5. ThemeResolver implementations
Class Description

FixedThemeResolver

Selects a fixed theme, set by using the defaultThemeName property.

SessionThemeResolver

The theme is maintained in the user’s HTTP session. It needs to be set only once for each session but is not persisted between sessions.

CookieThemeResolver

The selected theme is stored in a cookie on the client.

Spring also provides a ThemeChangeInterceptor that lets theme changes on every request with a simple request parameter.

Multipart Resolver

MultipartResolver from the org.springframework.web.multipart package is a strategy for parsing multipart requests including file uploads. There is one implementation based on Commons FileUpload and another based on Servlet 3.0 multipart request parsing.

To enable multipart handling, you need to declare a MultipartResolver bean in your DispatcherServlet Spring configuration with a name of multipartResolver. The DispatcherServlet detects it and applies it to the incoming request. When a POST with content-type of multipart/form-data is received, the resolver parses the content and wraps the current HttpServletRequest as MultipartHttpServletRequest to provide access to resolved parts in addition to exposing them as request parameters.

Apache Commons FileUpload

To use Apache Commons FileUpload, you can configure a bean of type CommonsMultipartResolver with a name of multipartResolver. You also need to have commons-fileupload as a dependency on your classpath.

Servlet 3.0

Servlet 3.0 multipart parsing needs to be enabled through Servlet container configuration. To do so:

  • In Java, set a MultipartConfigElement on the Servlet registration.

  • In web.xml, add a "<multipart-config>" section to the servlet declaration.

The following example shows how to set a MultipartConfigElement on the Servlet registration:

Java
public class AppInitializer extends AbstractAnnotationConfigDispatcherServletInitializer {

	// ...

	@Override
	protected void customizeRegistration(ServletRegistration.Dynamic registration) {

		// Optionally also set maxFileSize, maxRequestSize, fileSizeThreshold
		registration.setMultipartConfig(new MultipartConfigElement("/tmp"));
	}

}
Kotlin
class AppInitializer : AbstractAnnotationConfigDispatcherServletInitializer() {

	// ...

	override fun customizeRegistration(registration: ServletRegistration.Dynamic) {

		// Optionally also set maxFileSize, maxRequestSize, fileSizeThreshold
		registration.setMultipartConfig(MultipartConfigElement("/tmp"))
	}

}

Once the Servlet 3.0 configuration is in place, you can add a bean of type StandardServletMultipartResolver with a name of multipartResolver.

Logging

DEBUG-level logging in Spring MVC is designed to be compact, minimal, and human-friendly. It focuses on high-value bits of information that are useful over and over again versus others that are useful only when debugging a specific issue.

TRACE-level logging generally follows the same principles as DEBUG (and, for example, also should not be a fire hose) but can be used for debugging any issue. In addition, some log messages may show a different level of detail at TRACE versus DEBUG.

Good logging comes from the experience of using the logs. If you spot anything that does not meet the stated goals, please let us know.

Sensitive Data

DEBUG and TRACE logging may log sensitive information. This is why request parameters and headers are masked by default and their logging in full must be enabled explicitly through the enableLoggingRequestDetails property on DispatcherServlet.

The following example shows how to do so by using Java configuration:

Java
public class MyInitializer
		extends AbstractAnnotationConfigDispatcherServletInitializer {

	@Override
	protected Class<?>[] getRootConfigClasses() {
		return ... ;
	}

	@Override
	protected Class<?>[] getServletConfigClasses() {
		return ... ;
	}

	@Override
	protected String[] getServletMappings() {
		return ... ;
	}

	@Override
	protected void customizeRegistration(ServletRegistration.Dynamic registration) {
		registration.setInitParameter("enableLoggingRequestDetails", "true");
	}

}
Kotlin
class MyInitializer : AbstractAnnotationConfigDispatcherServletInitializer() {

	override fun getRootConfigClasses(): Array<Class<*>>? {
		return ...
	}

	override fun getServletConfigClasses(): Array<Class<*>>? {
		return ...
	}

	override fun getServletMappings(): Array<String> {
		return ...
	}

	override fun customizeRegistration(registration: ServletRegistration.Dynamic) {
		registration.setInitParameter("enableLoggingRequestDetails", "true")
	}
}