Annotation-based Container Configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configuration raised the question of whether this approach is “better” than XML. The short answer is “it depends.” The long answer is that each approach has its pros and cons, and, usually, it is up to the developer to decide which strategy suits them better. Due to the way they are defined, annotations provide a lot of context in their declaration, leading to shorter and more concise configuration. However, XML excels at wiring up components without touching their source code or recompiling them. Some developers prefer having the wiring close to the source while others argue that annotated classes are no longer POJOs and, furthermore, that the configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It is worth pointing out that through its JavaConfig option, Spring lets annotations be used in a non-invasive way, without touching the target components source code and that, in terms of tooling, all configuration styles are supported by the Spring Tool Suite.

An alternative to XML setup is provided by annotation-based configuration, which relies on the bytecode metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to describe a bean wiring, the developer moves the configuration into the component class itself by using annotations on the relevant class, method, or field declaration. As mentioned in beans-factory-extension-bpp-examples-rabpp, using a BeanPostProcessor in conjunction with annotations is a common means of extending the Spring IoC container. For example, Spring 2.0 introduced the possibility of enforcing required properties with the @Required annotation. Spring 2.5 made it possible to follow that same general approach to drive Spring’s dependency injection. Essentially, the @Autowired annotation provides the same capabilities as described in beans-factory-autowire but with more fine-grained control and wider applicability. Spring 2.5 also added support for JSR-250 annotations, such as @PostConstruct and @PreDestroy. Spring 3.0 added support for JSR-330 (Dependency Injection for Java) annotations contained in the javax.inject package such as @Inject and @Named. Details about those annotations can be found in the relevant section.

Annotation injection is performed before XML injection. Thus, the XML configuration overrides the annotations for properties wired through both approaches.

As always, you can register them as individual bean definitions, but they can also be implicitly registered by including the following tag in an XML-based Spring configuration (notice the inclusion of the context namespace):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:context="http://www.springframework.org/schema/context"
	xsi:schemaLocation="http://www.springframework.org/schema/beans
		https://www.springframework.org/schema/beans/spring-beans.xsd
		http://www.springframework.org/schema/context
		https://www.springframework.org/schema/context/spring-context.xsd">

	<context:annotation-config/>

</beans>

<context:annotation-config/> only looks for annotations on beans in the same application context in which it is defined. This means that, if you put <context:annotation-config/> in a WebApplicationContext for a DispatcherServlet, it only checks for @Autowired beans in your controllers, and not your services. See The DispatcherServlet for more information.

@Required

The @Required annotation applies to bean property setter methods, as in the following example:

Java
public class SimpleMovieLister {

	private MovieFinder movieFinder;

	@Required
	public void setMovieFinder(MovieFinder movieFinder) {
		this.movieFinder = movieFinder;
	}

	// ...
}
Kotlin
	class SimpleMovieLister {

	@Required
	lateinit var movieFinder: MovieFinder

	// ...
}

This annotation indicates that the affected bean property must be populated at configuration time, through an explicit property value in a bean definition or through autowiring. The container throws an exception if the affected bean property has not been populated. This allows for eager and explicit failure, avoiding NullPointerException instances or the like later on. We still recommend that you put assertions into the bean class itself (for example, into an init method). Doing so enforces those required references and values even when you use the class outside of a container.

The @Required annotation is formally deprecated as of Spring Framework 5.1, in favor of using constructor injection for required settings (or a custom implementation of InitializingBean.afterPropertiesSet() along with bean property setter methods).

Using @Autowired

JSR 330’s @Inject annotation can be used in place of Spring’s @Autowired annotation in the examples included in this section. See here for more details.

You can apply the @Autowired annotation to constructors, as the following example shows:

Java
public class MovieRecommender {

	private final CustomerPreferenceDao customerPreferenceDao;

	@Autowired
	public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
		this.customerPreferenceDao = customerPreferenceDao;
	}

	// ...
}
Kotlin
class MovieRecommender @Autowired constructor(
	private val customerPreferenceDao: CustomerPreferenceDao)

As of Spring Framework 4.3, an @Autowired annotation on such a constructor is no longer necessary if the target bean defines only one constructor to begin with. However, if several constructors are available, at least one must be annotated with @Autowired in order to instruct the container which one to use.

You can also apply the @Autowired annotation to traditional setter methods, as the following example shows:

Java
public class SimpleMovieLister {

	private MovieFinder movieFinder;

	@Autowired
	public void setMovieFinder(MovieFinder movieFinder) {
		this.movieFinder = movieFinder;
	}

	// ...
}
Kotlin
class SimpleMovieLister {

	@Autowired
	lateinit var movieFinder: MovieFinder

	// ...

}

You can also apply the annotation to methods with arbitrary names and multiple arguments, as the following example shows:

Java
public class MovieRecommender {

	private MovieCatalog movieCatalog;

	private CustomerPreferenceDao customerPreferenceDao;

	@Autowired
	public void prepare(MovieCatalog movieCatalog,
			CustomerPreferenceDao customerPreferenceDao) {
		this.movieCatalog = movieCatalog;
		this.customerPreferenceDao = customerPreferenceDao;
	}

	// ...
}
Kotlin
class MovieRecommender {

	private lateinit var movieCatalog: MovieCatalog

	private lateinit var customerPreferenceDao: CustomerPreferenceDao

	@Autowired
	fun prepare(movieCatalog: MovieCatalog,
				customerPreferenceDao: CustomerPreferenceDao) {
		this.movieCatalog = movieCatalog
		this.customerPreferenceDao = customerPreferenceDao
	}

	// ...
}

You can apply @Autowired to fields as well and even mix it with constructors, as the following example shows:

Java
public class MovieRecommender {

	private final CustomerPreferenceDao customerPreferenceDao;

	@Autowired
	private MovieCatalog movieCatalog;

	@Autowired
	public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
		this.customerPreferenceDao = customerPreferenceDao;
	}

	// ...
}
Kotlin
class MovieRecommender @Autowired constructor(
	private val customerPreferenceDao: CustomerPreferenceDao) {

	@Autowired
	private lateinit var movieCatalog: MovieCatalog

	// ...
}

Make sure that your target components (for example, MovieCatalog or CustomerPreferenceDao) are consistently declared by the type that you use for your @Autowired-annotated injection points. Otherwise, injection may fail due to a "no type match found" error at runtime.

For XML-defined beans or component classes found via classpath scanning, the container usually knows the concrete type up front. However, for @Bean factory methods, you need to make sure that the declared return type is sufficiently expressive. For components that implement several interfaces or for components potentially referred to by their implementation type, consider declaring the most specific return type on your factory method (at least as specific as required by the injection points referring to your bean).

You can also instruct Spring to provide all beans of a particular type from the ApplicationContext by adding the @Autowired annotation to a field or method that expects an array of that type, as the following example shows:

Java
public class MovieRecommender {

	@Autowired
	private MovieCatalog[] movieCatalogs;

	// ...
}
Kotlin
class MovieRecommender {

	@Autowired
	private lateinit var movieCatalogs: Array<MovieCatalog>

	// ...
}

The same applies for typed collections, as the following example shows:

Java
public class MovieRecommender {

	private Set<MovieCatalog> movieCatalogs;

	@Autowired
	public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) {
		this.movieCatalogs = movieCatalogs;
	}

	// ...
}
Kotlin
class MovieRecommender {

	@Autowired
	lateinit var movieCatalogs: Set<MovieCatalog>

	// ...
}

Your target beans can implement the org.springframework.core.Ordered interface or use the @Order or standard @Priority annotation if you want items in the array or list to be sorted in a specific order. Otherwise, their order follows the registration order of the corresponding target bean definitions in the container.

You can declare the @Order annotation at the target class level and on @Bean methods, potentially for individual bean definitions (in case of multiple definitions that use the same bean class). @Order values may influence priorities at injection points, but be aware that they do not influence singleton startup order, which is an orthogonal concern determined by dependency relationships and @DependsOn declarations.

Note that the standard javax.annotation.Priority annotation is not available at the @Bean level, since it cannot be declared on methods. Its semantics can be modeled through @Order values in combination with @Primary on a single bean for each type.

Even typed Map instances can be autowired as long as the expected key type is String. The map values contain all beans of the expected type, and the keys contain the corresponding bean names, as the following example shows:

Java
public class MovieRecommender {

	private Map<String, MovieCatalog> movieCatalogs;

	@Autowired
	public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) {
		this.movieCatalogs = movieCatalogs;
	}

	// ...
}
Kotlin
class MovieRecommender {

	@Autowired
	lateinit var movieCatalogs: Map<String, MovieCatalog>

	// ...
}

By default, autowiring fails when no matching candidate beans are available for a given injection point. In the case of a declared array, collection, or map, at least one matching element is expected.

The default behavior is to treat annotated methods and fields as indicating required dependencies. You can change this behavior as demonstrated in the following example, enabling the framework to skip a non-satisfiable injection point through marking it as non-required (i.e., by setting the required attribute in @Autowired to false):

Java
public class SimpleMovieLister {

	private MovieFinder movieFinder;

	@Autowired(required = false)
	public void setMovieFinder(MovieFinder movieFinder) {
		this.movieFinder = movieFinder;
	}

	// ...
}
Kotlin
class SimpleMovieLister {

	@Autowired(required = false)
	var movieFinder: MovieFinder? = null

	// ...
}

A non-required method will not be called at all if its dependency (or one of its dependencies, in case of multiple arguments) is not available. A non-required field will not get populated at all in such case, leaving its default value in place.

Injected constructor and factory method arguments are a special case since the required attribute in @Autowired has a somewhat different meaning due to Spring’s constructor resolution algorithm that may potentially deal with multiple constructors. Constructor and factory method arguments are effectively required by default but with a few special rules in a single-constructor scenario, such as multi-element injection points (arrays, collections, maps) resolving to empty instances if no matching beans are available. This allows for a common implementation pattern where all dependencies can be declared in a unique multi-argument constructor — for example, declared as a single public constructor without an @Autowired annotation.

Only one constructor of any given bean class may declare @Autowired with the required attribute set to true, indicating the constructor to autowire when used as a Spring bean. Furthermore, if the required attribute is set to true, only a single constructor may be annotated with @Autowired. If multiple non-required constructors declare the annotation, they will be considered as candidates for autowiring. The constructor with the greatest number of dependencies that can be satisfied by matching beans in the Spring container will be chosen. If none of the candidates can be satisfied, then a primary/default constructor (if present) will be used. If a class only declares a single constructor to begin with, it will always be used, even if not annotated. An annotated constructor does not have to be public.

The required attribute of @Autowired is recommended over the deprecated @Required annotation on setter methods. Setting the required attribute to false indicates that the property is not required for autowiring purposes, and the property is ignored if it cannot be autowired. @Required, on the other hand, is stronger in that it enforces the property to be set by any means supported by the container, and if no value is defined, a corresponding exception is raised.

Alternatively, you can express the non-required nature of a particular dependency through Java 8’s java.util.Optional, as the following example shows:

public class SimpleMovieLister {

	@Autowired
	public void setMovieFinder(Optional<MovieFinder> movieFinder) {
		...
	}
}

As of Spring Framework 5.0, you can also use a @Nullable annotation (of any kind in any package — for example, javax.annotation.Nullable from JSR-305) or just leverage Kotlin builtin null-safety support:

Java
public class SimpleMovieLister {

	@Autowired
	public void setMovieFinder(@Nullable MovieFinder movieFinder) {
		...
	}
}
Kotlin
class SimpleMovieLister {

	@Autowired
	var movieFinder: MovieFinder? = null

	// ...
}

You can also use @Autowired for interfaces that are well-known resolvable dependencies: BeanFactory, ApplicationContext, Environment, ResourceLoader, ApplicationEventPublisher, and MessageSource. These interfaces and their extended interfaces, such as ConfigurableApplicationContext or ResourcePatternResolver, are automatically resolved, with no special setup necessary. The following example autowires an ApplicationContext object:

Java
public class MovieRecommender {

	@Autowired
	private ApplicationContext context;

	public MovieRecommender() {
	}

	// ...
}
Kotlin
class MovieRecommender {

	@Autowired
	lateinit var context: ApplicationContext

	// ...
}

The @Autowired, @Inject, @Value, and @Resource annotations are handled by Spring BeanPostProcessor implementations. This means that you cannot apply these annotations within your own BeanPostProcessor or BeanFactoryPostProcessor types (if any). These types must be 'wired up' explicitly by using XML or a Spring @Bean method.

Fine-tuning Annotation-based Autowiring with @Primary

Because autowiring by type may lead to multiple candidates, it is often necessary to have more control over the selection process. One way to accomplish this is with Spring’s @Primary annotation. @Primary indicates that a particular bean should be given preference when multiple beans are candidates to be autowired to a single-valued dependency. If exactly one primary bean exists among the candidates, it becomes the autowired value.

Consider the following configuration that defines firstMovieCatalog as the primary MovieCatalog:

Java
@Configuration
public class MovieConfiguration {

	@Bean
	@Primary
	public MovieCatalog firstMovieCatalog() { ... }

	@Bean
	public MovieCatalog secondMovieCatalog() { ... }

	// ...
}
Kotlin
@Configuration
class MovieConfiguration {

	@Bean
	@Primary
	fun firstMovieCatalog(): MovieCatalog { ... }

	@Bean
	fun secondMovieCatalog(): MovieCatalog { ... }

	// ...
}

With the preceding configuration, the following MovieRecommender is autowired with the firstMovieCatalog:

Java
public class MovieRecommender {

	@Autowired
	private MovieCatalog movieCatalog;

	// ...
}
Kotlin
class MovieRecommender {

	@Autowired
	private lateinit var movieCatalog: MovieCatalog

	// ...
}

The corresponding bean definitions follow:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:context="http://www.springframework.org/schema/context"
	xsi:schemaLocation="http://www.springframework.org/schema/beans
		https://www.springframework.org/schema/beans/spring-beans.xsd
		http://www.springframework.org/schema/context
		https://www.springframework.org/schema/context/spring-context.xsd">

	<context:annotation-config/>

	<bean class="example.SimpleMovieCatalog" primary="true">
		<!-- inject any dependencies required by this bean -->
	</bean>

	<bean class="example.SimpleMovieCatalog">
		<!-- inject any dependencies required by this bean -->
	</bean>

	<bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

Fine-tuning Annotation-based Autowiring with Qualifiers

@Primary is an effective way to use autowiring by type with several instances when one primary candidate can be determined. When you need more control over the selection process, you can use Spring’s @Qualifier annotation. You can associate qualifier values with specific arguments, narrowing the set of type matches so that a specific bean is chosen for each argument. In the simplest case, this can be a plain descriptive value, as shown in the following example:

Java
public class MovieRecommender {

	@Autowired
	@Qualifier("main")
	private MovieCatalog movieCatalog;

	// ...
}
Kotlin
class MovieRecommender {

	@Autowired
	@Qualifier("main")
	private lateinit var movieCatalog: MovieCatalog

	// ...
}

You can also specify the @Qualifier annotation on individual constructor arguments or method parameters, as shown in the following example:

Java
public class MovieRecommender {

	private MovieCatalog movieCatalog;

	private CustomerPreferenceDao customerPreferenceDao;

	@Autowired
	public void prepare(@Qualifier("main") MovieCatalog movieCatalog,
			CustomerPreferenceDao customerPreferenceDao) {
		this.movieCatalog = movieCatalog;
		this.customerPreferenceDao = customerPreferenceDao;
	}

	// ...
}
Kotlin
class MovieRecommender {

	private lateinit var movieCatalog: MovieCatalog

	private lateinit var customerPreferenceDao: CustomerPreferenceDao

	@Autowired
	fun prepare(@Qualifier("main") movieCatalog: MovieCatalog,
				customerPreferenceDao: CustomerPreferenceDao) {
		this.movieCatalog = movieCatalog
		this.customerPreferenceDao = customerPreferenceDao
	}

	// ...
}

The following example shows corresponding bean definitions.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:context="http://www.springframework.org/schema/context"
	xsi:schemaLocation="http://www.springframework.org/schema/beans
		https://www.springframework.org/schema/beans/spring-beans.xsd
		http://www.springframework.org/schema/context
		https://www.springframework.org/schema/context/spring-context.xsd">

	<context:annotation-config/>

	<bean class="example.SimpleMovieCatalog">
		<qualifier value="main"/> (1)

		<!-- inject any dependencies required by this bean -->
	</bean>

	<bean class="example.SimpleMovieCatalog">
		<qualifier value="action"/> (2)

		<!-- inject any dependencies required by this bean -->
	</bean>

	<bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>
1 The bean with the main qualifier value is wired with the constructor argument that is qualified with the same value.
2 The bean with the action qualifier value is wired with the constructor argument that is qualified with the same value.

For a fallback match, the bean name is considered a default qualifier value. Thus, you can define the bean with an id of main instead of the nested qualifier element, leading to the same matching result. However, although you can use this convention to refer to specific beans by name, @Autowired is fundamentally about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with the bean name fallback, always have narrowing semantics within the set of type matches. They do not semantically express a reference to a unique bean id. Good qualifier values are main or EMEA or persistent, expressing characteristics of a specific component that are independent from the bean id, which may be auto-generated in case of an anonymous bean definition such as the one in the preceding example.

Qualifiers also apply to typed collections, as discussed earlier — for example, to Set<MovieCatalog>. In this case, all matching beans, according to the declared qualifiers, are injected as a collection. This implies that qualifiers do not have to be unique. Rather, they constitute filtering criteria. For example, you can define multiple MovieCatalog beans with the same qualifier value “action”, all of which are injected into a Set<MovieCatalog> annotated with @Qualifier("action").

Letting qualifier values select against target bean names, within the type-matching candidates, does not require a @Qualifier annotation at the injection point. If there is no other resolution indicator (such as a qualifier or a primary marker), for a non-unique dependency situation, Spring matches the injection point name (that is, the field name or parameter name) against the target bean names and choose the same-named candidate, if any.

That said, if you intend to express annotation-driven injection by name, do not primarily use @Autowired, even if it is capable of selecting by bean name among type-matching candidates. Instead, use the JSR-250 @Resource annotation, which is semantically defined to identify a specific target component by its unique name, with the declared type being irrelevant for the matching process. @Autowired has rather different semantics: After selecting candidate beans by type, the specified String qualifier value is considered within those type-selected candidates only (for example, matching an account qualifier against beans marked with the same qualifier label).

For beans that are themselves defined as a collection, Map, or array type, @Resource is a fine solution, referring to the specific collection or array bean by unique name. That said, as of 4.3, collection, you can match Map, and array types through Spring’s @Autowired type matching algorithm as well, as long as the element type information is preserved in @Bean return type signatures or collection inheritance hierarchies. In this case, you can use qualifier values to select among same-typed collections, as outlined in the previous paragraph.

As of 4.3, @Autowired also considers self references for injection (that is, references back to the bean that is currently injected). Note that self injection is a fallback. Regular dependencies on other components always have precedence. In that sense, self references do not participate in regular candidate selection and are therefore in particular never primary. On the contrary, they always end up as lowest precedence. In practice, you should use self references as a last resort only (for example, for calling other methods on the same instance through the bean’s transactional proxy). Consider factoring out the effected methods to a separate delegate bean in such a scenario. Alternatively, you can use @Resource, which may obtain a proxy back to the current bean by its unique name.

Trying to inject the results from @Bean methods on the same configuration class is effectively a self-reference scenario as well. Either lazily resolve such references in the method signature where it is actually needed (as opposed to an autowired field in the configuration class) or declare the affected @Bean methods as static, decoupling them from the containing configuration class instance and its lifecycle. Otherwise, such beans are only considered in the fallback phase, with matching beans on other configuration classes selected as primary candidates instead (if available).

@Autowired applies to fields, constructors, and multi-argument methods, allowing for narrowing through qualifier annotations at the parameter level. In contrast, @Resource is supported only for fields and bean property setter methods with a single argument. As a consequence, you should stick with qualifiers if your injection target is a constructor or a multi-argument method.

You can create your own custom qualifier annotations. To do so, define an annotation and provide the @Qualifier annotation within your definition, as the following example shows:

Java
@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Genre {

	String value();
}
Kotlin
@Target(AnnotationTarget.FIELD, AnnotationTarget.VALUE_PARAMETER)
@Retention(AnnotationRetention.RUNTIME)
@Qualifier
annotation class Genre(val value: String)

Then you can provide the custom qualifier on autowired fields and parameters, as the following example shows:

Java
public class MovieRecommender {

	@Autowired
	@Genre("Action")
	private MovieCatalog actionCatalog;

	private MovieCatalog comedyCatalog;

	@Autowired
	public void setComedyCatalog(@Genre("Comedy") MovieCatalog comedyCatalog) {
		this.comedyCatalog = comedyCatalog;
	}

	// ...
}
Kotlin
class MovieRecommender {

	@Autowired
	@Genre("Action")
	private lateinit var actionCatalog: MovieCatalog

	private lateinit var comedyCatalog: MovieCatalog

	@Autowired
	fun setComedyCatalog(@Genre("Comedy") comedyCatalog: MovieCatalog) {
		this.comedyCatalog = comedyCatalog
	}

	// ...
}

Next, you can provide the information for the candidate bean definitions. You can add <qualifier/> tags as sub-elements of the <bean/> tag and then specify the type and value to match your custom qualifier annotations. The type is matched against the fully-qualified class name of the annotation. Alternately, as a convenience if no risk of conflicting names exists, you can use the short class name. The following example demonstrates both approaches:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:context="http://www.springframework.org/schema/context"
	xsi:schemaLocation="http://www.springframework.org/schema/beans
		https://www.springframework.org/schema/beans/spring-beans.xsd
		http://www.springframework.org/schema/context
		https://www.springframework.org/schema/context/spring-context.xsd">

	<context:annotation-config/>

	<bean class="example.SimpleMovieCatalog">
		<qualifier type="Genre" value="Action"/>
		<!-- inject any dependencies required by this bean -->
	</bean>

	<bean class="example.SimpleMovieCatalog">
		<qualifier type="example.Genre" value="Comedy"/>
		<!-- inject any dependencies required by this bean -->
	</bean>

	<bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

In beans-classpath-scanning, you can see an annotation-based alternative to providing the qualifier metadata in XML. Specifically, see beans-scanning-qualifiers.

In some cases, using an annotation without a value may suffice. This can be useful when the annotation serves a more generic purpose and can be applied across several different types of dependencies. For example, you may provide an offline catalog that can be searched when no Internet connection is available. First, define the simple annotation, as the following example shows:

Java
@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Offline {

}
Kotlin
@Target(AnnotationTarget.FIELD, AnnotationTarget.VALUE_PARAMETER)
@Retention(AnnotationRetention.RUNTIME)
@Qualifier
annotation class Offline

Then add the annotation to the field or property to be autowired, as shown in the following example:

Java
public class MovieRecommender {

	@Autowired
	@Offline (1)
	private MovieCatalog offlineCatalog;

	// ...
}
1 This line adds the @Offline annotation.
Kotlin
class MovieRecommender {

	@Autowired
	@Offline (1)
	private lateinit var offlineCatalog: MovieCatalog

	// ...
}
1 This line adds the @Offline annotation.

Now the bean definition only needs a qualifier type, as shown in the following example:

<bean class="example.SimpleMovieCatalog">
	<qualifier type="Offline"/> (1)
	<!-- inject any dependencies required by this bean -->
</bean>
1 This element specifies the qualifier.

You can also define custom qualifier annotations that accept named attributes in addition to or instead of the simple value attribute. If multiple attribute values are then specified on a field or parameter to be autowired, a bean definition must match all such attribute values to be considered an autowire candidate. As an example, consider the following annotation definition:

Java
@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface MovieQualifier {

	String genre();

	Format format();
}
Kotlin
@Target(AnnotationTarget.FIELD, AnnotationTarget.VALUE_PARAMETER)
@Retention(AnnotationRetention.RUNTIME)
@Qualifier
annotation class MovieQualifier(val genre: String, val format: Format)

In this case Format is an enum, defined as follows:

Java
public enum Format {
	VHS, DVD, BLURAY
}
Kotlin
enum class Format {
	VHS, DVD, BLURAY
}

The fields to be autowired are annotated with the custom qualifier and include values for both attributes: genre and format, as the following example shows:

Java
public class MovieRecommender {

	@Autowired
	@MovieQualifier(format=Format.VHS, genre="Action")
	private MovieCatalog actionVhsCatalog;

	@Autowired
	@MovieQualifier(format=Format.VHS, genre="Comedy")
	private MovieCatalog comedyVhsCatalog;

	@Autowired
	@MovieQualifier(format=Format.DVD, genre="Action")
	private MovieCatalog actionDvdCatalog;

	@Autowired
	@MovieQualifier(format=Format.BLURAY, genre="Comedy")
	private MovieCatalog comedyBluRayCatalog;

	// ...
}
Kotlin
class MovieRecommender {

	@Autowired
	@MovieQualifier(format = Format.VHS, genre = "Action")
	private lateinit var actionVhsCatalog: MovieCatalog

	@Autowired
	@MovieQualifier(format = Format.VHS, genre = "Comedy")
	private lateinit var comedyVhsCatalog: MovieCatalog

	@Autowired
	@MovieQualifier(format = Format.DVD, genre = "Action")
	private lateinit var actionDvdCatalog: MovieCatalog

	@Autowired
	@MovieQualifier(format = Format.BLURAY, genre = "Comedy")
	private lateinit var comedyBluRayCatalog: MovieCatalog

	// ...
}

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates that you can use bean meta attributes instead of the <qualifier/> elements. If available, the <qualifier/> element and its attributes take precedence, but the autowiring mechanism falls back on the values provided within the <meta/> tags if no such qualifier is present, as in the last two bean definitions in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:context="http://www.springframework.org/schema/context"
	xsi:schemaLocation="http://www.springframework.org/schema/beans
		https://www.springframework.org/schema/beans/spring-beans.xsd
		http://www.springframework.org/schema/context
		https://www.springframework.org/schema/context/spring-context.xsd">

	<context:annotation-config/>

	<bean class="example.SimpleMovieCatalog">
		<qualifier type="MovieQualifier">
			<attribute key="format" value="VHS"/>
			<attribute key="genre" value="Action"/>
		</qualifier>
		<!-- inject any dependencies required by this bean -->
	</bean>

	<bean class="example.SimpleMovieCatalog">
		<qualifier type="MovieQualifier">
			<attribute key="format" value="VHS"/>
			<attribute key="genre" value="Comedy"/>
		</qualifier>
		<!-- inject any dependencies required by this bean -->
	</bean>

	<bean class="example.SimpleMovieCatalog">
		<meta key="format" value="DVD"/>
		<meta key="genre" value="Action"/>
		<!-- inject any dependencies required by this bean -->
	</bean>

	<bean class="example.SimpleMovieCatalog">
		<meta key="format" value="BLURAY"/>
		<meta key="genre" value="Comedy"/>
		<!-- inject any dependencies required by this bean -->
	</bean>

</beans>

=== Using Generics as Autowiring Qualifiers

In addition to the @Qualifier annotation, you can use Java generic types as an implicit form of qualification. For example, suppose you have the following configuration:

Java
@Configuration
public class MyConfiguration {

	@Bean
	public StringStore stringStore() {
		return new StringStore();
	}

	@Bean
	public IntegerStore integerStore() {
		return new IntegerStore();
	}
}
Kotlin
@Configuration
class MyConfiguration {

	@Bean
	fun stringStore() = StringStore()

	@Bean
	fun integerStore() = IntegerStore()
}

Assuming that the preceding beans implement a generic interface, (that is, Store<String> and Store<Integer>), you can @Autowire the Store interface and the generic is used as a qualifier, as the following example shows:

Java
@Autowired
private Store<String> s1; // <String> qualifier, injects the stringStore bean

@Autowired
private Store<Integer> s2; // <Integer> qualifier, injects the integerStore bean
Kotlin
@Autowired
private lateinit var s1: Store<String> // <String> qualifier, injects the stringStore bean

@Autowired
private lateinit var s2: Store<Integer> // <Integer> qualifier, injects the integerStore bean

Generic qualifiers also apply when autowiring lists, Map instances and arrays. The following example autowires a generic List:

Java
// Inject all Store beans as long as they have an <Integer> generic
// Store<String> beans will not appear in this list
@Autowired
private List<Store<Integer>> s;
Kotlin
// Inject all Store beans as long as they have an <Integer> generic
// Store<String> beans will not appear in this list
@Autowired
private lateinit var s: List<Store<Integer>>

=== Using CustomAutowireConfigurer

CustomAutowireConfigurer is a BeanFactoryPostProcessor that lets you register your own custom qualifier annotation types, even if they are not annotated with Spring’s @Qualifier annotation. The following example shows how to use CustomAutowireConfigurer:

<bean id="customAutowireConfigurer"
		class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer">
	<property name="customQualifierTypes">
		<set>
			<value>example.CustomQualifier</value>
		</set>
	</property>
</bean>

The AutowireCandidateResolver determines autowire candidates by:

  • The autowire-candidate value of each bean definition

  • Any default-autowire-candidates patterns available on the <beans/> element

  • The presence of @Qualifier annotations and any custom annotations registered with the CustomAutowireConfigurer

When multiple beans qualify as autowire candidates, the determination of a “primary” is as follows: If exactly one bean definition among the candidates has a primary attribute set to true, it is selected.

=== Injection with @Resource

Spring also supports injection by using the JSR-250 @Resource annotation (javax.annotation.Resource) on fields or bean property setter methods. This is a common pattern in Java EE: for example, in JSF-managed beans and JAX-WS endpoints. Spring supports this pattern for Spring-managed objects as well.

@Resource takes a name attribute. By default, Spring interprets that value as the bean name to be injected. In other words, it follows by-name semantics, as demonstrated in the following example:

Java
public class SimpleMovieLister {

	private MovieFinder movieFinder;

	@Resource(name="myMovieFinder") (1)
	public void setMovieFinder(MovieFinder movieFinder) {
		this.movieFinder = movieFinder;
	}
}
1 This line injects a @Resource.
Kotlin
class SimpleMovieLister {

	@Resource(name="myMovieFinder") (1)
	private lateinit var movieFinder:MovieFinder
}
1 This line injects a @Resource.

If no name is explicitly specified, the default name is derived from the field name or setter method. In case of a field, it takes the field name. In case of a setter method, it takes the bean property name. The following example is going to have the bean named movieFinder injected into its setter method:

Java
public class SimpleMovieLister {

	private MovieFinder movieFinder;

	@Resource
	public void setMovieFinder(MovieFinder movieFinder) {
		this.movieFinder = movieFinder;
	}
}
Kotlin
class SimpleMovieLister {

	@Resource
	private lateinit var movieFinder: MovieFinder

}
The name provided with the annotation is resolved as a bean name by the ApplicationContext of which the CommonAnnotationBeanPostProcessor is aware. The names can be resolved through JNDI if you configure Spring’s SimpleJndiBeanFactory explicitly. However, we recommend that you rely on the default behavior and use Spring’s JNDI lookup capabilities to preserve the level of indirection.

In the exclusive case of @Resource usage with no explicit name specified, and similar to @Autowired, @Resource finds a primary type match instead of a specific named bean and resolves well known resolvable dependencies: the BeanFactory, ApplicationContext, ResourceLoader, ApplicationEventPublisher, and MessageSource interfaces.

Thus, in the following example, the customerPreferenceDao field first looks for a bean named "customerPreferenceDao" and then falls back to a primary type match for the type CustomerPreferenceDao:

Java
public class MovieRecommender {

	@Resource
	private CustomerPreferenceDao customerPreferenceDao;

	@Resource
	private ApplicationContext context; (1)

	public MovieRecommender() {
	}

	// ...
}
1 The context field is injected based on the known resolvable dependency type: ApplicationContext.
Kotlin
class MovieRecommender {

	@Resource
	private lateinit var customerPreferenceDao: CustomerPreferenceDao


	@Resource
	private lateinit var context: ApplicationContext (1)

	// ...
}
1 The context field is injected based on the known resolvable dependency type: ApplicationContext.

=== Using @Value

@Value is typically used to inject externalized properties:

Java
@Component
public class MovieRecommender {

    private final String catalog;

    public MovieRecommender(@Value("${catalog.name}") String catalog) {
        this.catalog = catalog;
    }
}
Kotlin
@Component
class MovieRecommender(@Value("\${catalog.name}") private val catalog: String)

With the following configuration:

Java
@Configuration
@PropertySource("classpath:application.properties")
public class AppConfig { }
Kotlin
@Configuration
@PropertySource("classpath:application.properties")
class AppConfig

And the following application.properties file:

catalog.name=MovieCatalog

In that case, the catalog parameter and field will be equal to the MovieCatalog value.

A default lenient embedded value resolver is provided by Spring. It will try to resolve the property value and if it cannot be resolved, the property name (for example ${catalog.name}) will be injected as the value. If you want to maintain strict control over nonexistent values, you should declare a PropertySourcesPlaceholderConfigurer bean, as the following example shows:

Java
@Configuration
public class AppConfig {

     @Bean
     public static PropertySourcesPlaceholderConfigurer propertyPlaceholderConfigurer() {
           return new PropertySourcesPlaceholderConfigurer();
     }
}
Kotlin
@Configuration
class AppConfig {

	@Bean
	fun propertyPlaceholderConfigurer() = PropertySourcesPlaceholderConfigurer()
}
When configuring a PropertySourcesPlaceholderConfigurer using JavaConfig, the @Bean method must be static.

Using the above configuration ensures Spring initialization failure if any ${} placeholder could not be resolved. It is also possible to use methods like setPlaceholderPrefix, setPlaceholderSuffix, or setValueSeparator to customize placeholders.

Spring Boot configures by default a PropertySourcesPlaceholderConfigurer bean that will get properties from application.properties and application.yml files.

Built-in converter support provided by Spring allows simple type conversion (to Integer or int for example) to be automatically handled. Multiple comma-separated values can be automatically converted to String array without extra effort.

It is possible to provide a default value as following:

Java
@Component
public class MovieRecommender {

    private final String catalog;

    public MovieRecommender(@Value("${catalog.name:defaultCatalog}") String catalog) {
        this.catalog = catalog;
    }
}
Kotlin
@Component
class MovieRecommender(@Value("\${catalog.name:defaultCatalog}") private val catalog: String)

A Spring BeanPostProcessor uses a ConversionService behind the scene to handle the process for converting the String value in @Value to the target type. If you want to provide conversion support for your own custom type, you can provide your own ConversionService bean instance as the following example shows:

Java
@Configuration
public class AppConfig {

    @Bean
    public ConversionService conversionService() {
        DefaultFormattingConversionService conversionService = new DefaultFormattingConversionService();
        conversionService.addConverter(new MyCustomConverter());
        return conversionService;
    }
}
Kotlin
@Configuration
class AppConfig {

	@Bean
	fun conversionService(): ConversionService {
			return DefaultFormattingConversionService().apply {
			addConverter(MyCustomConverter())
		}
	}
}

When @Value contains a SpEL expression the value will be dynamically computed at runtime as the following example shows:

Java
@Component
public class MovieRecommender {

    private final String catalog;

    public MovieRecommender(@Value("#{systemProperties['user.catalog'] + 'Catalog' }") String catalog) {
        this.catalog = catalog;
    }
}
Kotlin
@Component
class MovieRecommender(
	@Value("#{systemProperties['user.catalog'] + 'Catalog' }") private val catalog: String)

SpEL also enables the use of more complex data structures:

Java
@Component
public class MovieRecommender {

    private final Map<String, Integer> countOfMoviesPerCatalog;

    public MovieRecommender(
            @Value("#{{'Thriller': 100, 'Comedy': 300}}") Map<String, Integer> countOfMoviesPerCatalog) {
        this.countOfMoviesPerCatalog = countOfMoviesPerCatalog;
    }
}
Kotlin
@Component
class MovieRecommender(
	@Value("#{{'Thriller': 100, 'Comedy': 300}}") private val countOfMoviesPerCatalog: Map<String, Int>)

=== Using @PostConstruct and @PreDestroy

The CommonAnnotationBeanPostProcessor not only recognizes the @Resource annotation but also the JSR-250 lifecycle annotations: javax.annotation.PostConstruct and javax.annotation.PreDestroy. Introduced in Spring 2.5, the support for these annotations offers an alternative to the lifecycle callback mechanism described in initialization callbacks and destruction callbacks. Provided that the CommonAnnotationBeanPostProcessor is registered within the Spring ApplicationContext, a method carrying one of these annotations is invoked at the same point in the lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method. In the following example, the cache is pre-populated upon initialization and cleared upon destruction:

Java
public class CachingMovieLister {

	@PostConstruct
	public void populateMovieCache() {
		// populates the movie cache upon initialization...
	}

	@PreDestroy
	public void clearMovieCache() {
		// clears the movie cache upon destruction...
	}
}
Kotlin
class CachingMovieLister {

	@PostConstruct
	fun populateMovieCache() {
		// populates the movie cache upon initialization...
	}

	@PreDestroy
	fun clearMovieCache() {
		// clears the movie cache upon destruction...
	}
}

For details about the effects of combining various lifecycle mechanisms, see beans-factory-lifecycle-combined-effects.

Like @Resource, the @PostConstruct and @PreDestroy annotation types were a part of the standard Java libraries from JDK 6 to 8. However, the entire javax.annotation package got separated from the core Java modules in JDK 9 and eventually removed in JDK 11. If needed, the javax.annotation-api artifact needs to be obtained via Maven Central now, simply to be added to the application’s classpath like any other library.