1. SpringApplication

The SpringApplication class provides a convenient way to bootstrap a Spring application that is started from a main() method. In many situations, you can delegate to the static SpringApplication.run method, as shown in the following example:

public static void main(String[] args) {
    SpringApplication.run(MySpringConfiguration.class, args);
}

When your application starts, you should see something similar to the following output:

  .   ____          _            __ _ _
 /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
  '  |____| .__|_| |_|_| |_\__, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot ::   v2.3.0.BUILD-SNAPSHOT

2019-04-31 13:09:54.117  INFO 56603 --- [           main] o.s.b.s.app.SampleApplication            : Starting SampleApplication v0.1.0 on mycomputer with PID 56603 (/apps/myapp.jar started by pwebb)
2019-04-31 13:09:54.166  INFO 56603 --- [           main] ationConfigServletWebServerApplicationContext : Refreshing org.springframework.boot.web.ser[email protected]6e5a8246: startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context hierarchy
2019-04-01 13:09:56.912  INFO 41370 --- [           main] .t.TomcatServletWebServerFactory : Server initialized with port: 8080
2019-04-01 13:09:57.501  INFO 41370 --- [           main] o.s.b.s.app.SampleApplication            : Started SampleApplication in 2.992 seconds (JVM running for 3.658)

By default, INFO logging messages are shown, including some relevant startup details, such as the user that launched the application. If you need a log level other than INFO, you can set it, as described in [boot-features-custom-log-levels]. The application version is determined using the implementation version from the main application class’s package. Startup information logging can be turned off by setting spring.main.log-startup-info to false. This will also turn off logging of the application’s active profiles.

To add additional logging during startup, you can override logStartupInfo(boolean) in a subclass of SpringApplication.

1.1. Startup Failure

If your application fails to start, registered FailureAnalyzers get a chance to provide a dedicated error message and a concrete action to fix the problem. For instance, if you start a web application on port 8080 and that port is already in use, you should see something similar to the following message:

***************************
APPLICATION FAILED TO START
***************************

Description:

Embedded servlet container failed to start. Port 8080 was already in use.

Action:

Identify and stop the process that's listening on port 8080 or configure this application to listen on another port.
Spring Boot provides numerous FailureAnalyzer implementations, and you can add your own.

If no failure analyzers are able to handle the exception, you can still display the full conditions report to better understand what went wrong. To do so, you need to enable the debug property or enable DEBUG logging for org.springframework.boot.autoconfigure.logging.ConditionEvaluationReportLoggingListener.

For instance, if you are running your application by using java -jar, you can enable the debug property as follows:

$ java -jar myproject-0.0.1-SNAPSHOT.jar --debug

1.2. Lazy Initialization

SpringApplication allows an application to be initialized lazily. When lazy initialization is enabled, beans are created as they are needed rather than during application startup. As a result, enabling lazy initialization can reduce the time that it takes your application to start. In a web application, enabling lazy initialization will result in many web-related beans not being initialized until an HTTP request is received.

A downside of lazy initialization is that it can delay the discovery of a problem with the application. If a misconfigured bean is initialized lazily, a failure will no longer occur during startup and the problem will only become apparent when the bean is initialized. Care must also be taken to ensure that the JVM has sufficient memory to accommodate all of the application’s beans and not just those that are initialized during startup. For these reasons, lazy initialization is not enabled by default and it is recommended that fine-tuning of the JVM’s heap size is done before enabling lazy initialization.

Lazy initialization can be enabled programatically using the lazyInitialization method on SpringApplicationBuilder or the setLazyInitialization method on SpringApplication. Alternatively, it can be enabled using the configprop:spring.main.lazy-initialization[] property as shown in the following example:

spring.main.lazy-initialization=true
If you want to disable lazy initialization for certain beans while using lazy initialization for the rest of the application, you can explicitly set their lazy attribute to false using the @Lazy(false) annotation.

1.3. Customizing the Banner

The banner that is printed on start up can be changed by adding a banner.txt file to your classpath or by setting the configprop:spring.banner.location[] property to the location of such a file. If the file has an encoding other than UTF-8, you can set spring.banner.charset. In addition to a text file, you can also add a banner.gif, banner.jpg, or banner.png image file to your classpath or set the configprop:spring.banner.image.location[] property. Images are converted into an ASCII art representation and printed above any text banner.

Inside your banner.txt file, you can use any of the following placeholders:

Table 1. Banner variables
Variable Description

${application.version}

The version number of your application, as declared in MANIFEST.MF. For example, Implementation-Version: 1.0 is printed as 1.0.

${application.formatted-version}

The version number of your application, as declared in MANIFEST.MF and formatted for display (surrounded with brackets and prefixed with v). For example (v1.0).

${spring-boot.version}

The Spring Boot version that you are using. For example 2.3.0.BUILD-SNAPSHOT.

${spring-boot.formatted-version}

The Spring Boot version that you are using, formatted for display (surrounded with brackets and prefixed with v). For example (v2.3.0.BUILD-SNAPSHOT).

${Ansi.NAME} (or ${AnsiColor.NAME}, ${AnsiBackground.NAME}, ${AnsiStyle.NAME})

Where NAME is the name of an ANSI escape code. See AnsiPropertySource for details.

${application.title}

The title of your application, as declared in MANIFEST.MF. For example Implementation-Title: MyApp is printed as MyApp.

The SpringApplication.setBanner(…​) method can be used if you want to generate a banner programmatically. Use the org.springframework.boot.Banner interface and implement your own printBanner() method.

You can also use the configprop:spring.main.banner-mode[] property to determine if the banner has to be printed on System.out (console), sent to the configured logger (log), or not produced at all (off).

The printed banner is registered as a singleton bean under the following name: springBootBanner.

1.4. Customizing SpringApplication

If the SpringApplication defaults are not to your taste, you can instead create a local instance and customize it. For example, to turn off the banner, you could write:

public static void main(String[] args) {
    SpringApplication app = new SpringApplication(MySpringConfiguration.class);
    app.setBannerMode(Banner.Mode.OFF);
    app.run(args);
}
The constructor arguments passed to SpringApplication are configuration sources for Spring beans. In most cases, these are references to @Configuration classes, but they could also be references to XML configuration or to packages that should be scanned.

It is also possible to configure the SpringApplication by using an application.properties file. See [boot-features-external-config] for details.

For a complete list of the configuration options, see the SpringApplication Javadoc.

1.5. Fluent Builder API

If you need to build an ApplicationContext hierarchy (multiple contexts with a parent/child relationship) or if you prefer using a “fluent” builder API, you can use the SpringApplicationBuilder.

The SpringApplicationBuilder lets you chain together multiple method calls and includes parent and child methods that let you create a hierarchy, as shown in the following example:

new SpringApplicationBuilder()
        .sources(Parent.class)
        .child(Application.class)
        .bannerMode(Banner.Mode.OFF)
        .run(args);
There are some restrictions when creating an ApplicationContext hierarchy. For example, Web components must be contained within the child context, and the same Environment is used for both parent and child contexts. See the SpringApplicationBuilder Javadoc for full details.

1.6. Application Events and Listeners

In addition to the usual Spring Framework events, such as ContextRefreshedEvent, a SpringApplication sends some additional application events.

Some events are actually triggered before the ApplicationContext is created, so you cannot register a listener on those as a @Bean. You can register them with the SpringApplication.addListeners(…​) method or the SpringApplicationBuilder.listeners(…​) method.

If you want those listeners to be registered automatically, regardless of the way the application is created, you can add a META-INF/spring.factories file to your project and reference your listener(s) by using the org.springframework.context.ApplicationListener key, as shown in the following example:

org.springframework.context.ApplicationListener=com.example.project.MyListener

Application events are sent in the following order, as your application runs:

  1. An ApplicationStartingEvent is sent at the start of a run but before any processing, except for the registration of listeners and initializers.

  2. An ApplicationEnvironmentPreparedEvent is sent when the Environment to be used in the context is known but before the context is created.

  3. An ApplicationContextInitializedEvent is sent when the ApplicationContext is prepared and ApplicationContextInitializers have been called but before any bean definitions are loaded.

  4. An ApplicationPreparedEvent is sent just before the refresh is started but after bean definitions have been loaded.

  5. An ApplicationStartedEvent is sent after the context has been refreshed but before any application and command-line runners have been called.

  6. An ApplicationReadyEvent is sent after any application and command-line runners have been called. It indicates that the application is ready to service requests.

  7. An ApplicationFailedEvent is sent if there is an exception on startup.

The above list only includes SpringApplicationEvents that are tied to a SpringApplication. In addition to these, the following events are also published after ApplicationPreparedEvent and before ApplicationStartedEvent:

  1. A ContextRefreshedEvent is sent when an ApplicationContext is refreshed.

  2. A WebServerInitializedEvent is sent after the WebServer is ready. ServletWebServerInitializedEvent and ReactiveWebServerInitializedEvent are the servlet and reactive variants respectively.

You often need not use application events, but it can be handy to know that they exist. Internally, Spring Boot uses events to handle a variety of tasks.

Application events are sent by using Spring Framework’s event publishing mechanism. Part of this mechanism ensures that an event published to the listeners in a child context is also published to the listeners in any ancestor contexts. As a result of this, if your application uses a hierarchy of SpringApplication instances, a listener may receive multiple instances of the same type of application event.

To allow your listener to distinguish between an event for its context and an event for a descendant context, it should request that its application context is injected and then compare the injected context with the context of the event. The context can be injected by implementing ApplicationContextAware or, if the listener is a bean, by using @Autowired.

1.7. Web Environment

A SpringApplication attempts to create the right type of ApplicationContext on your behalf. The algorithm used to determine a WebApplicationType is fairly simple:

  • If Spring MVC is present, an AnnotationConfigServletWebServerApplicationContext is used

  • If Spring MVC is not present and Spring WebFlux is present, an AnnotationConfigReactiveWebServerApplicationContext is used

  • Otherwise, AnnotationConfigApplicationContext is used

This means that if you are using Spring MVC and the new WebClient from Spring WebFlux in the same application, Spring MVC will be used by default. You can override that easily by calling setWebApplicationType(WebApplicationType).

It is also possible to take complete control of the ApplicationContext type that is used by calling setApplicationContextClass(…​).

It is often desirable to call setWebApplicationType(WebApplicationType.NONE) when using SpringApplication within a JUnit test.

1.8. Accessing Application Arguments

If you need to access the application arguments that were passed to SpringApplication.run(…​), you can inject a org.springframework.boot.ApplicationArguments bean. The ApplicationArguments interface provides access to both the raw String[] arguments as well as parsed option and non-option arguments, as shown in the following example:

import org.springframework.boot.*;
import org.springframework.beans.factory.annotation.*;
import org.springframework.stereotype.*;

@Component
public class MyBean {

    @Autowired
    public MyBean(ApplicationArguments args) {
        boolean debug = args.containsOption("debug");
        List<String> files = args.getNonOptionArgs();
        // if run with "--debug logfile.txt" debug=true, files=["logfile.txt"]
    }

}
Spring Boot also registers a CommandLinePropertySource with the Spring Environment. This lets you also inject single application arguments by using the @Value annotation.

1.9. Using the ApplicationRunner or CommandLineRunner

If you need to run some specific code once the SpringApplication has started, you can implement the ApplicationRunner or CommandLineRunner interfaces. Both interfaces work in the same way and offer a single run method, which is called just before SpringApplication.run(…​) completes.

The CommandLineRunner interfaces provides access to application arguments as a simple string array, whereas the ApplicationRunner uses the ApplicationArguments interface discussed earlier. The following example shows a CommandLineRunner with a run method:

import org.springframework.boot.*;
import org.springframework.stereotype.*;

@Component
public class MyBean implements CommandLineRunner {

    public void run(String... args) {
        // Do something...
    }

}

If several CommandLineRunner or ApplicationRunner beans are defined that must be called in a specific order, you can additionally implement the org.springframework.core.Ordered interface or use the org.springframework.core.annotation.Order annotation.

1.10. Application Exit

Each SpringApplication registers a shutdown hook with the JVM to ensure that the ApplicationContext closes gracefully on exit. All the standard Spring lifecycle callbacks (such as the DisposableBean interface or the @PreDestroy annotation) can be used.

In addition, beans may implement the org.springframework.boot.ExitCodeGenerator interface if they wish to return a specific exit code when SpringApplication.exit() is called. This exit code can then be passed to System.exit() to return it as a status code, as shown in the following example:

@SpringBootApplication
public class ExitCodeApplication {

    @Bean
    public ExitCodeGenerator exitCodeGenerator() {
        return () -> 42;
    }

    public static void main(String[] args) {
        System.exit(SpringApplication.exit(SpringApplication.run(ExitCodeApplication.class, args)));
    }

}

Also, the ExitCodeGenerator interface may be implemented by exceptions. When such an exception is encountered, Spring Boot returns the exit code provided by the implemented getExitCode() method.

1.11. Admin Features

It is possible to enable admin-related features for the application by specifying the configprop:spring.application.admin.enabled[] property. This exposes the SpringApplicationAdminMXBean on the platform MBeanServer. You could use this feature to administer your Spring Boot application remotely. This feature could also be useful for any service wrapper implementation.

If you want to know on which HTTP port the application is running, get the property with a key of local.server.port.